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Microwave Assisted Organic
Synthesis (MAOS)

® In 1986, Gedye and Giguere report first use of
microwaves in organic chemical reactions

m [ate 1990’s saw the arrival of single mode instruments
with on-line monitoring of temperature and pressure.

B By end of 2005, estimated 3000 publications related to
MAOS
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MAOS at West Point
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Reaction Vials




Advancer 350

- Batch Format

- 50 — 300 ml

- 60 — 250 degtrees C
1 — 20 bar
1200 W magnetron

- Multi-tiered safety
measures




Reaction Vessels




Chemistry
m Since May 2004, approx. 5.0 kgs

of starting materials have been processed
for various projects within Med Chem

m [argest run 100g

B Smallest run .625g
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MAOS in synthesis of
HIV Integrase Inhibitor



HIV Integrase Inhibitor

N O
F NN - Preclinical Proof of Concept for
' | HIV therapy
N N P
N
0] OH

DariaJ. Hazuda, Steven D. Young et a. Science 23 July 2004, Volume 305, pp 528-532
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Bromide Displacement
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The Chdlenge:

Process gpproximately 1200g of bromide.
Conditions.
A: MeNH,inTHF, DIEA, DMSO, sededvessd 140°C, 72h 78% projected 120g/run

B: MeNH,inTHF, DIEA, DMSO, micowave 170°C, 1h 68% 35g/run

The Winner: MICROWAVES

Microwaves. about 35 hoursreactiontime versus 30 days for conventional method.



MAOS in preparation
of Rasta Resins



Solid-Supported Scavengers

A(Xx)+B —= AB+A g» AB +OXA

- solid-supported reagentsto aid in purification
- published by Kaldor  (Tet Lett Vol 37, No 4, pp7193-7196 (1996)

- Hodges publishes paper on Polymer-Supported Quenching
(JACS 1997, 119 4882-4836)

AB



Methylisocyanate for Amines

O/\ NH 2 triphosgene (200 mo|>% O/\ NCO

triethylamine (500 mol %)
(< 1.1 mmol of N/g) room temp. (1.0 mmol NCO/ g)

- the highest loading possible with commercially available resin
- for scavenging, want highest loading of functionallity as possible
- maximal reproducible loading achieved was 1.5 mmol/g

- disadvantage: urea cross linking vs isocyanate formation at higher
loading.



In Search of ...

m Hodges etal [. Comb. Chemn. 2000, 2, 8§0-88

B Begin investigating polymerization of isocyanate
bearing monomers.

m [nvestigate living free radical polymerization.



Living Free-Radical Polymerization

® Defined in the 1950’s as the process of chain
polymerization that proceeds in the absence of
irreversible chain-termination and chain-transfer steps.

m Realized by anionic polymerization (1950)

B Did not really emerge until the 1980’s, the first
successful form was nitroxide-mediated polymerization

(NMP)



Living Free-Radical Polymerization

etc until all

instantaneous le¢ — IMe — IMMe— IMMMe — & o

initiation

- polymer chain remains dormant until reactivated then a second
monomer may be introduced. Equilibrium exists between dormant

and active species.

- method provides end-group control and enables synthesis of
macromolecules (ie block copolymers) by sequential addition of monomers.

- advantage: al chains are approximately the same if initiation is rapid
on the time scale of monomer consumption.

Adash & Russell Chemistry in New Zealand 2004, 69, 8-13



Nitroxide-mediated Polymerization

(dormant)
S
o_ﬁp . : ob

(dormant)
- because of equilibrium, radical concentration is low, U
thus termination is suppressed. z
- activation remains fast enough for long polymer growth
In a reasonable time frame.

Adash & Russell Chemistry in New Zealand 2004, 69, 8-13
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Conventional Free-Radical

Polymerization
_ propagation
fgrt‘it;‘i‘g?lus le — > IMe —»> IMMe —»> [IMMMe —» €iC
terminationl l l l l

dead polymer

- many commercial polymers are prepared this way.
- dlowsfor awide range of monomersto be used under mild conditions

- disadvantage: polymer product is polydiverse

Adash & Russdll Chemistry in New Zealand 2004, 69, 8-13



Proof of Concept

\ .
O—N
—: 130°C sedled V|aI
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(50 mg) (450 ol
"Rastaresin"

Results: z § : :

visibly larger bead with linear polymers

O- fold increase in mass

40.4% Br by elemental analysis (5.05 mmol/g loading)



Isocyanate Rasta Resin

O/\O_N (TM )]
130°C 16h

Results:
- workup of resin resulted in a disappointing 1.0 mmol NCO/g

- were able to achieve a Rastaresin through copolymerization
with styrene (~2.5 mmol NCO/q)

- successful investigation as an amine scavenger

5 Rastaresinsare commercially available through Aldrich !



Rasta Merrifield Resin

Wisnoski et d Tetrahedron Letters 44 (2003) 4321-4325

Cl(m P)

N/ /\Cl(m )
O—N )
o 185°C O
(200 mg) mw, 10 min

(1300 mg)

Y

Initial run provided a 6.5 fold increase of mass and aloading leve of
5.9 mmol/g (20.8% Cl)

Subseguent runs gave an average 6 fold increase of mass and ~5.8 mmol/g
loading (23% Cl)



Microwave-initiated LFRP

Wisnoski et d Tetrahedron Letters 44 (2003) 4321-4325

185°C O S

Br

=6

(200 mg) mw, 10 min n

(1450 mg)
Results:
microwave preparation conventional preparation
7.2 fold increase of mass 9 fold increase of mass
5.5 mmol/g loading (44% Br) 5.0g mmol/g (40.4% Br)
192um —~ ~550um 75-150 um — 250um

spherical spherical



Rasta Amines

Wisnoski et al Tetrahedron Letters 44 (2003) 4321-4325

\/-—Cl(myp)

HNR;R,
DMF

200°C
mw, 30 min

Amine Loading
NEt 5.0 mmol/g
HN~<< > 4.5 mmol/g
2
HN, > 5.0 mmol/g
HN o) 4.2 mmol/g
_/
HN NH 4.2 mmol/g

(

NR;R,



Scale-up of Metrrifield Rasta resin

—Cl(m,p)
Wcmm,p) RA
0—N ) N
I 185°C O
(10g) mw, 10 min

no stirring,
passive cool

Results:

- initial run disappointing: reaction crashed cooled, internal
temperature reached 225°C, fused polymeric mass

- repeat conditions, used ramp heating (.5°C/sec). Again
crash cooled, temperature exceded 200°C, polymeric mass

- repeat conditions, now add 90 mis NMP. Crashed cooled
-reduced temperature to 140°C and increased time to 60 min

Recovered 50.559 of resin with a loading of 5.43mmol/g
(small scale produced a loading of 5.8 mmol/qg)



Optimization of Temperature

—Cl(m.p)
N/ X cmp &
Q- .
Q—5-
(10q) mw
ramp heating
no stirring,
passive cool
90 mls NMP
Conditions RESTIIS
15 min @ 170°C crashed cooled (186°C)
30 min @ 160°C 41gresin 5.3 mmol/g
15 min @ 160°C 37.23gresin 5.45 mmol/g
10 min @ 160°C 32.20g resin  5.23mmol/g

5min @ 160°C 28.96g resin 4.85 mmol/g



Microwave-initiated LFRP

Br
Q—- ‘
140°C O O—N
10g mw, 60 min n
46.79

Results

scaleup micr owave preparation conventional preparation
4.6fold 7.2 fold increase of mass 9 fold incresse of mass
3.85 mmol/g (30.45%) 5.5 mmol/g loading (44% Br) 5.0g mmol/g (40.4% Br)
370um to 450um 192um —> ~550um 75-150 um—>250um

spherica Spherica spherical



Rasta Resins

m PS — TEMPO resin

®m Bromide

m Merrifield




Rasta Amines

\/—Cl(mvp)

HNR;R,
DMF
O O—N - > NR;R,
200°C
mw, 30 min
10g
Amine Small scale Large scale
NEt, 5.0 mmol/g 4.5 mmol/g
HN—<< > 4.5 mmol/g 3.28 mmol/g
2
o) 5.0 mmol/g 4.51 mmol/g
HN o 4.2 mmol/g 4.44 mmol/
\__/ °
HN NH 4.2 mmol/g 3.17 mmol/g



mw

60 min@140°C
ramp heating
no stirring, 1169
passive cool

100 misNMP

- unbreakable solid mass in core of rxn vessel

- 5.23 mmol/g loading



Conclusion

m Enhanced synthesis of intermediate to support
further internal and external studies of HIV
Integrase inhibitors.

m A new scalable protocol that affords multi-gram
quantities of custom Rasta resins.

Tetrahedron Letters 48 (2007) 1497-1501
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