Scaling up Microwave Reactions

Presented by Joe Pawluczyk Preparative Chemistry and Separations Application of Modern Tools in Organic Synthesis Biotage Summer Program July 21 – 23, 2008 University of Richmond Richmond, Virginia USA

Overview

- Introduction to MAOS
- MAOS at West Point
- Chemistry
- MAOS in prep of HIV Integrase Inhibitor
- MAOS in scaling up Rasta resins

Conclusion

Microwave Assisted Organic Synthesis (MAOS)

In 1986, Gedye and Giguere report first use of microwaves in organic chemical reactions

■ Late 1990's saw the arrival of single mode instruments with on-line monitoring of temperature and pressure.

By end of 2005, estimated 3000 publications related to MAOS

Microwave Assisted Organic Synthesis (MAOS)

In 1986, Gedye and Giguere report first use of microwaves in organic chemical reactions

Late 1990's saw the arrival of single mode instruments with on-line monitoring of temperature and pressure.

By end of 2005, estimated 3000 publications related to MAOS

Microwave Assisted Organic Synthesis (MAOS)

In 1986, Gedye and Giguere report first use of microwaves in organic chemical reactions

Late 1990's saw the arrival of single mode instruments with on-line monitoring of temperature and pressure.

By end of 2005, estimated 3000 publications related to MAOS

MAOS at West Point

Biotage Initiator Sixty

Reaction Vials

Advancer 350

- Batch Format
- 50 300 ml
- 60 250 degrees C
- 1 20 bar
- 1200 W magnetron
- Multi-tiered safety measures

Reaction Vessels

Chemistry

Since May 2004, approx. 5.0 kgs of starting materials have been processed for various projects within Med Chem

Largest run 100g

Smallest run .625g

Examples

MAOS in synthesis of HIV Integrase Inhibitor

HIV Integrase Inhibitor

- Preclinical Proof of Concept for HIV therapy

Daria J. Hazuda, Steven D. Young et al. Science 23 July 2004, Volume 305, pp 528-532

HIV Integrase Inhibitor

- Preclinical Proof of Concept for HIV therapy

Daria J. Hazuda, Steven D. Young et al. Science 23 July 2004, Volume 305, pp 528-532

Bromide Displacement

The Challenge:

Process approximately 1200g of bromide.

Conditions:

A: MeNH₂ in THF, DIEA, DMSO, sealed vessel 140° C, 72 h 78% projected 120g/run

B: MeNH₂ in THF, DIEA, DMSO, microwave 170° C, 1 h 68% 35g/run

The Winner: MICROWAVES!

Microwaves: about 35 hours reaction time versus 30 days for conventional method.

MAOS in preparation of Rasta Resins

Solid-Supported Scavengers

$$A(xs) + B \longrightarrow AB + A \xrightarrow{xA} AB + \bigcirc AB + \bigcirc AB$$

- solid-supported reagents to aid in purification
- published by Kaldor (*Tet Lett Vol 37, No 4, pp7193-7196 (1996*)
- Hodges publishes paper on Polymer-Supported Quenching (JACS 1997, 119 4882-4886)

Methylisocyanate for Amines

triphosgene (200 mol % triethylamine (500 mol %) room temp.

- the highest loading possible with commercially available resin
- for scavenging, want highest loading of functionallity as possible
- maximal reproducible loading achieved was 1.5 mmol/g
- disadvantage: urea cross linking vs isocyanate formation at higher loading.

In Search of ...

- Hodges et al J. Comb. Chem. 2000, 2, 80-88

 Begin investigating polymerization of isocyanate bearing monomers.

Investigate living free radical polymerization.

Living Free-Radical Polymerization

Defined in the 1950's as the process of chain polymerization that proceeds in the absence of irreversible chain-termination and chain-transfer steps.

Realized by anionic polymerization (1950)

 Did not really emerge until the 1980's, the first successful form was nitroxide-mediated polymerization (NMP)

Living Free-Radical Polymerization

instantaneous
$$I \bullet \longrightarrow IM \bullet \longrightarrow IMM \bullet \longrightarrow IMMM \bullet \longrightarrow etc until all M consumed$$

- polymer chain remains dormant until reactivated then a second monomer may be introduced. Equilibrium exists between dormant and active species.
- method provides end-group control and enables synthesis of macromolecules (ie block copolymers) by sequential addition of monomers.
- advantage: all chains are approximately the same if initiation is rapid on the time scale of monomer consumption.

Nitroxide-mediated Polymerization

Living Free-Radical Polymerization

$$\stackrel{\text{instantaneous}}{\text{initiation}} I \bullet \longrightarrow IM \bullet \longrightarrow IMM \bullet \longrightarrow IMMM \bullet \longrightarrow \text{etc until all} M \text{ consumed}$$

- polymer chain remains dormant until reactivated then a second monomer may be introduced. Equilibrium exists between dormant and active species.
- method provides end-group control and enables synthesis of macromolecules (ie block copolymers) by sequential addition of monomers.
- advantage: all chains are approximately the same if initiation is rapid on the time scale of monomer consumption.

Living Free-Radical Polymerization

$$\stackrel{\text{instantaneous}}{\text{initiation}} I \bullet \longrightarrow IM \bullet \longrightarrow IMM \bullet \longrightarrow IMMM \bullet \longrightarrow \text{etc until all} M \text{ consumed}$$

- polymer chain remains dormant until reactivated then a second monomer may be introduced. Equilibrium exists between dormant and active species.
- method provides end-group control and enables synthesis of macromolecules (ie block copolymers) by sequential addition of monomers.
- advantage: all chains are approximately the same if initiation is rapid on the time scale of monomer consumption.

Conventional Free-Radical Polymerization

- many commercial polymers are prepared this way.
- allows for a wide range of monomers to be used under mild conditions
- disadvantage: polymer product is polydiverse

Proof of Concept

40.4% Br by elemental analysis (5.05 mmol/g loading)

Isocyanate Rasta Resin

Results:

- workup of resin resulted in a disappointing 1.0 mmol NCO/g
- were able to achieve a Rasta resin through copolymerization with styrene (~2.5 mmol NCO/g)
- successful investigation as an amine scavenger

5 Rasta resins are commercially available through Aldrich !

Rasta Merrifield Resin

Wisnoski et al Tetrahedron Letters 44 (2003) 4321-4325

Initial run provided a 6.5 fold increase of mass and a loading level of 5.9 mmol/g (20.8% Cl)

Subsequent runs gave an average 6 fold increase of mass and ~5.8 mmol/g loading (23% Cl)

Microwave-initiated LFRP

Wisnoski et al Tetrahedron Letters 44 (2003) 4321-4325

Results:

microwave preparation
7.2 fold increase of mass
5.5 mmol/g loading (44% Br)
192um → ~ 550 um
spherical

conventional preparation 9 fold increase of mass 5.0g mmol/g (40.4% Br) 75-150 um → 250um spherical

Rasta Amines

Wisnoski et al Tetrahedron Letters 44 (2003) 4321-4325

Scale-up of Merrifield Rasta resin

Results:

 - initial run disappointing: reaction crashed cooled, internal temperature reached 225°C, fused polymeric mass

- repeat conditions, used ramp heating (.5°C/sec). Again crash cooled, temperature exceded 200°C, polymeric mass

- repeat conditions, now add 90 mls NMP. Crashed cooled

-reduced temperature to 140°C and increased time to 60 min Recovered 50.55g of resin with a loading of 5.43mmol/g (small scale produced a loading of 5.8 mmol/g)

Optimization of Temperature

Conditions	Results crashed cooled (186°C)	
5 min @ 170ºC		
30 min @ 160°C	41g resin 5.3 mmol/g	
15 min @ 160°C	37.23g resin 5.45 mmol/g	
10 min @ 160°C	32.20g resin 5.23mmol/g	
5 min @ 160ºC	28.96g resin 4.85 mmol/g	

Microwave-initiated LFRP

Results:

scale up 4.6 fold 3.85 mmol/g (30.45%) 370um to 450um spherical microwave preparation 7.2 fold increase of mass 5.5 mmol/g loading (44% Br) 192um — ~ 550 um spherical

conventional preparation 9 fold increase of mass 5.0g mmol/g (40.4% Br) 75-150 um →250um spherical

Rasta Resins

■ PS – TEMPO resin

Bromide

Rasta Amines

Amine	Small scale	Large scale
NEt ₂	5.0 mmol/g	4.5 mmol/g
	4.5 mmol/g	3.28 mmol/g
HN	5.0 mmol/g	4.51 mmol/g
HNO	4.2 mmol/g	4.44 mmol/g
HNNNH	4.2 mmol/g	3.17 mmol/g

How Much ?

- unbreakable solid mass in core of rxn vessel

- 5.23 mmol/g loading

Conclusion

 Enhanced synthesis of intermediate to support further internal and external studies of HIV Integrase inhibitors.

A new scalable protocol that affords multi-gram quantities of custom Rasta resins.

Tetrahedron Letters 48 (2007) 1497-1501

Acknowledgements

Jim Guare

Craig Lindsley
Deanne Jackson Rudd
Ray McClain
James Mulhearn
Chris Denicola