The New Syro Wave Microwave & Parallel Peptide Synthesizer - "The Best of Both Worlds"

Amit Mehrotra PhD Marketing Manager – Peptide Chemistry Product Manager – Synthesis

Outline

- Overview of Biotage & MST
- Biotage Peptide Products
 - Peptide Synthesizers
 - ChemMatrix Resins
 - Resolux HPLC Columns
- Microwave Heating
- Syro *Wave*™
- Syro *Wave*[™] Application work
- Conclusion

Biotage

With more than 5,000 discovery chemistry systems installed in over 600 facilities worldwide, Biotage automated systems and consumables work together to increase productivity and improve success rates

Microwave-Assisted Organic Synthesis (MAOS) Solid-Phase Extraction (SPE) Automated Flash Purification Rapid Solvent Evaporation

& PEPTIDES

MultiSynTech

Biotage entered the peptide synthesis business by partnering with MultiSynTech of Germany and provides technical support with fully trained Field Service Engineers and Application Chemists worldwide

- Dr. Udo Treffer, CEO of MultiSynTech, is a peptide chemist, who developed the Syro I and Syro II robotic peptide synthesizers
- Over 150 systems installed
- Over 300 publications in technical journals using Syro systems for peptide synthesis
- Proven reliable in the most demanding applications

Microwave Assisted Peptide Synthesis Using Biotage Instruments

Manual SPPS

M. Erdélyi, A. Gogoll, *Rapid microwave-assisted solid phase peptide synthesis*, Synthesis, **2002**, 11, 1592-1596*

M. Brandt, S. Gammeltoft, **K. J. Jensen**, *Microwave heating for solidphase peptide synthesis: General evaluation and applications to 15-mer phosphopeptides*, International Journal of Peptide Research and Therapeutics, **2006**, 12(4), 349-357

Semi-automated SPPS

S. L. Pedersen, K. K. Sørensen, **K. J. Jensen**, Semi-automated microwave-assisted SPPS: *Optimization of protocols and synthesis of difficult sequences*, Biopolymers (Peptide Science), **2010**, 94, 206-212

Fully automated SPPS

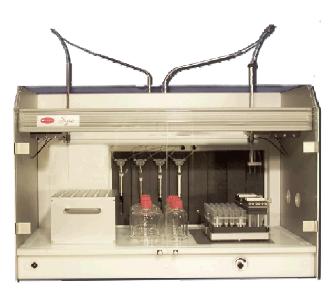
L. Malik, A. P. Tofteng, S. L. Pedersen, K. K. Sørensen and **K. J. Jensen**, *Automated 'X-Y' robot for peptide synthesis with microwave heating: Application to difficult peptide sequences and protein domains*, Journal of Peptide Science, **2010**, 16, 506-512

* Personal Chemistry

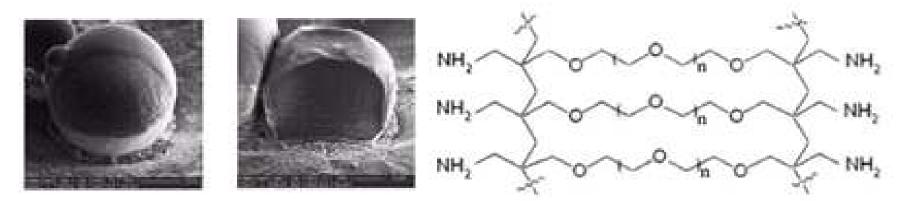
Peptide Market Estimates

 The market for synthetic therapeutic peptides rose from €5.3 billion in 2003 to €8 billion in 2005. It has been estimated that it will reach €11.5 billion in 2013

Pichereau, C. and Allary, C. (2005) Therapeutic peptides under the spotlight. Eur. Biopharm. Rev. 88–91

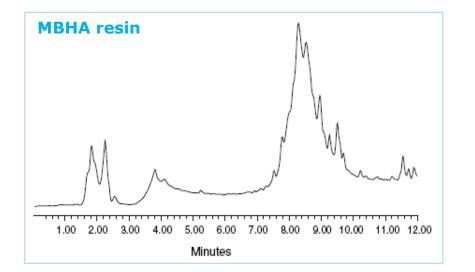

- CBI (Commonwealth Biotechnologies Inc) believes the market for peptide drugs will achieve a compound annual growth rate of 7.5 per cent and be worth \$13.4bn by 2010 (June 2009)
- The worldwide market for custom peptides is projected to grow at an annual average rate of 11.9%, valuing the market up to \$1bn in 2010 *CBI market update, Euroinvestor.co.uk, March 2010*

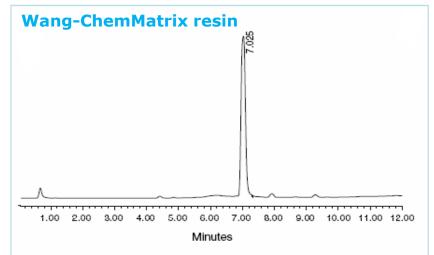
Biotage Peptide Synthesis System



ChemMatrix Resins

If your peptide is : long, complex, or hydrophobic: \rightarrow ChemMatrix resin


- Biotage is now distributing ChemMatrix resins
- Biotage have selected 5 of the most popular linker chemistries for SPPS (Rink, Wang, HMPB, Trityl, PAL)
- ChemMatrix is a patented 100% PEG resin from Matrix Innovation that offers substantial advantages over traditional PS & PEG based resins for SPPS
- Peptides produced with ChemMatrix higher purity and yields Biotage


Benefits of ChemMatrix Resin

- Exceptional stability more stability for the chemistry needed in peptide synthesis
- No Leaching does not add impurity to the end-users work flow
- Excellent solvent compatibility organic or aqueous, water or otherwise
- Many choices of linker and also pre-loaded options available – we have access to a wide choice
- Proven superior performance comparison of synthesis of Protease HIV-1 (99 aa) using Wang-ChemMatrix and PS resin shows significant advantages
- Microwave compatible in peptide synthesizers or manual synthesis

Case Study: Protease HIV-1 (99 aa)

After 78 cycles

- Scale: 0.1 mmoleConditions: HATU/HOAt/DIEA
- Cleavage: Reagent K, 2 h

Int. J. Pept. Res. Ther. 2007, 13, 221-227

The Resolux family

- R-P HPLC columns for separation of peptides and proteins
- Analytical, semi-prep & prep columns
- Three product lines, defined on the different pore sizes and each product line is available with two surface chemistries:
 - Resolux 120: A 120 Å media available with C18 and C8 functional groups
 - Resolux 200: A 200 Å media available with C18 and C4 functional groups
 - Resolux 300: A 300 Å media available with C18 and C4 functional groups
- An economical choice

Microwave Heating Gives...

• Faster and more precise heating

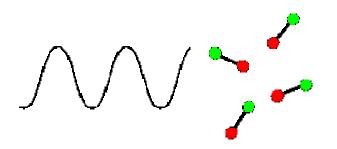
• Faster chemical reactions

• Greater yields and better purities

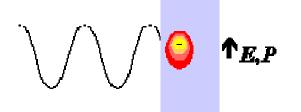
• Novel reactions

Why Does Microwave Heating Speed Up Reactions?

Arrhenius Equation: $k = A e^{-Ea/RT}$


Conventional	Microwave		
23°C / 12 h	=	100°C / 5 min	
70°C/16h	=	150°C/5min	

Reaction rate roughly doubles for every 10 °C temperature increase

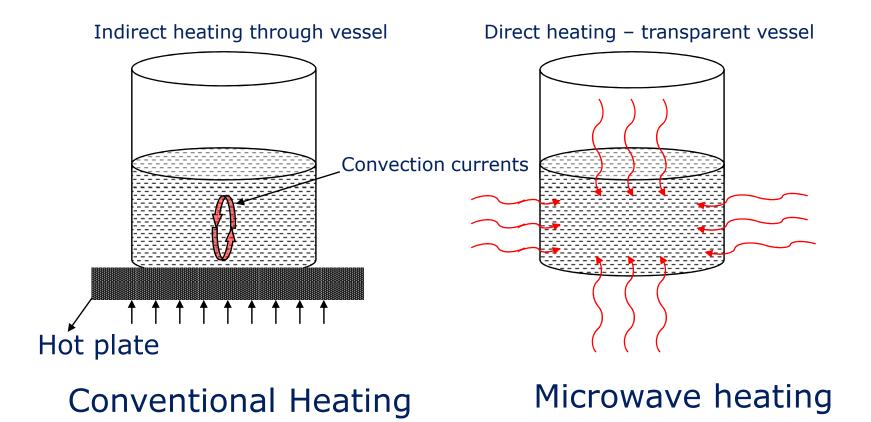


Mechanism of Microwave Heating

Dipolar oscillation

Ionic conduction

Molecular Orientation = Molecular Friction = Heat



Advantages of Microwave Heating

- The rate of heating is generally higher than by conventional means
- No direct contact between the energy source and the reaction mixture
 - No temperature gradient through the sample
- The energy transfer is direct to the absorbing reactants
- Allows reactions to occur in a more controlled manner in a decreased time scale

Heating in Synthesis

Syro *Wave*[™] - "The Best of Both Worlds"

This unique Parallel Peptide Synthesizer with Automated Microwave Technology offers "The Best of Both Worlds" for Peptide Chemists

Syro *Wave*[™] - "The Best of Both Worlds"

The Syro *Wave* is the result of a joint development project announced last year between Biotage and MultiSynTech

It combines the proven performance of the established MultiSynTech robotic synthesizer with Biotage's expertise in microwave technology

Syro *Wave*[™] - "The Best of Both Worlds"

- Standalone parallel peptide synthesizers:
 - productivity and cost efficiency
- Standalone microwave peptide synthesizers:
 - difficult or longer peptides
- Inevitably results in:
 - Increased demand on bench space
 - Duplication of computer control systems
 - Multiple operating software platforms to learn and maintain
- Biotage has addressed these shortcomings, with the Syro Wave[™], containing both parallel and microwave technologies on the same platform

Biotage Syro Wave[™] - Specification

Includes PC, Monitor, Printer & Syro XP Software

Microwave cavity

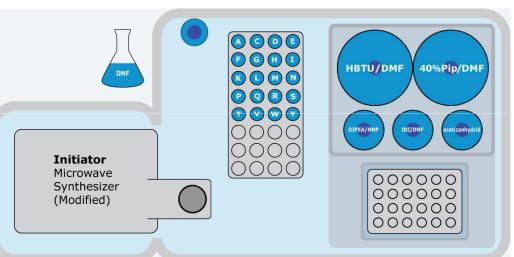
Single robotic arm

- 1 x digital syringe pump
- 2 Vortex mixers: µWave & parallel

24 or 48 position reactor block

Vacuum Pump

Amino Acid Rack

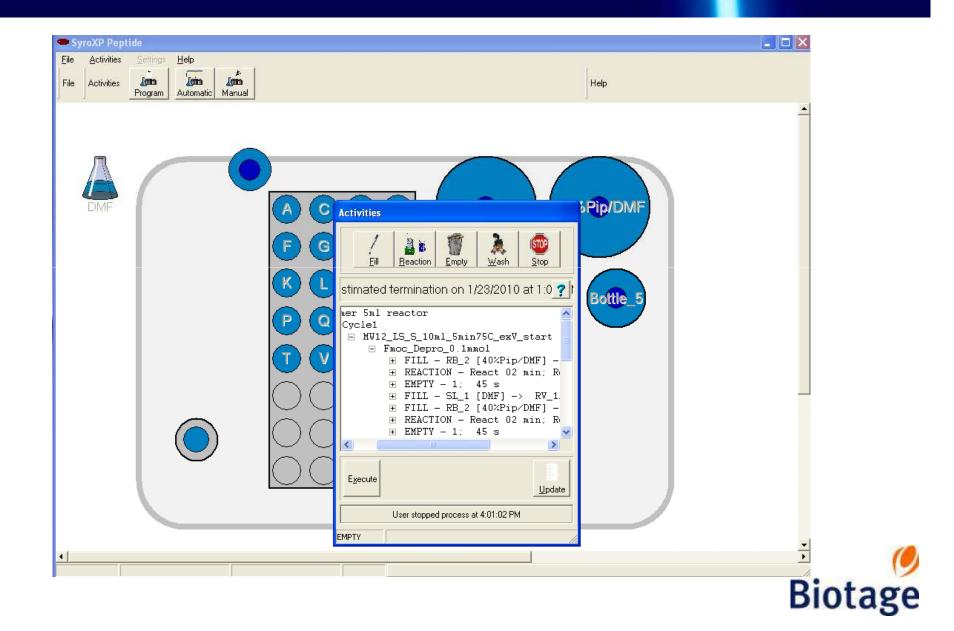

Reagent Bottle Rack

Waste Bottle

Biotage Syro *Wave*™

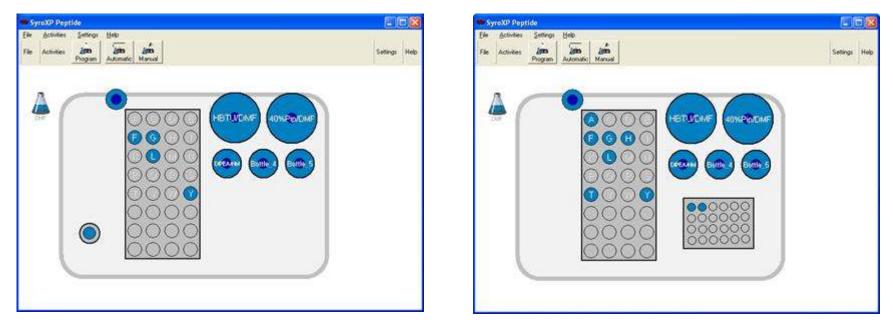
Syro *Wave*™

- The Biotage Syro *Wave*[™] is the **first** valve-free peptide synthesizer with integrated microwave heating
- The system offers unequalled productivity for peptide synthesis with the ability to run 24, 48 or 96 reactions in parallel at RT
- The additional microwave cavity can reduce cycle times and synthesize a long peptide in the shortest possible reaction time
- Unlike other systems that use complex valve modules and compressed air transfer of reagents, the Syro Wave™ system delivers precise volumes of each reagent with a robotic liquid handler. This design minimizes amino acid consumption and therefore reduces synthesis cost
- Proven history of performance and reliability



Syro *Wave*[™] - Key Features & Benefits

- All amino acids and reagents are delivered by a digital syringe pump for the highest accuracy and minimum reagent use
- Dedicated vortex mixer for MW allows for homogeneous heat distribution in the reactor vial
- Disposable reactor vials avoid wasting time cleaning reactors or replacing blocked frits
- Separate ("off-line") cleavage & transfer workstation removes any bottlenecks in synthesis



Syro XP Software

Syro XP Software

The Workplace is an active component of the programming desktop

Chemfile - covers all the commands for a reaction step

Workfile - covers all the commands for an entire synthesis cycle

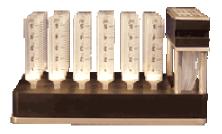
Synthesis file - containing all the cycles for a complete synthesis **Biotage**

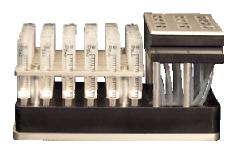
Consumables & Accessories

Vial Loading Tool

Consumables & Accessories

5 ml PP reactor vial with PTFE frit Disposable


50 ml AA vessel Re-usable/disposable



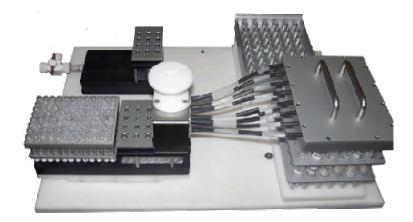
Reactor Block Configurations

24 x reactor block

- 2-ml reactor vials for 5-50 µmole or
- 5 ml reactor vials for 25-150 µmole or
- 10 ml reactor vials for 50-300 µmole
- <u>1 x Syro Wave</u>[™] & Syro I, 2 x Syro II

48 x reactor block

2 ml reactor vials for 5-50 µmole **1 x Syro** *Wave*[™] **& Syro I, 2 x Syro II**



96 x tip reactor (optional)

0.4 ml pipette tips for 1-5 µmole **1 x Syro Wave**[™] **& Syro I, 3 x Syro II**

Cleavage & Transfer Workstation

Parallel cleavage & transfer

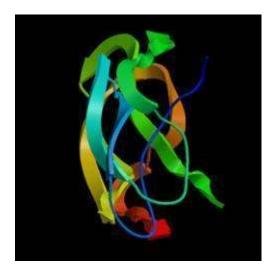
- 3-configurations: 24 position reactor block 48 position reactor block 96 position Tip reactor block
- Pressure mediated transfer of the cleavage solution into the transfer rack
- Simple and reliable manual operation
- This off-line cleavage and transfer process improves throughput

Syro *Wave*[™] - Summary of Advantages

- Microwave and parallel peptide synthesis capability
 - 3 systems in 1
 - Single channel microwave peptide synthesizer
 - Parallel peptide synthesizer RT
 - Single channel peptide synthesizer RT
 - versatile solution to synthesize difficult sequences
 - higher yield for long peptides (and short)
 - faster reactions for reduced synthesis time
 - reduced reagent consumption and lower cost
 - improved reliability

What is a difficult sequence?

So called "difficult sequences" are problematic if not impossible to synthesize using standard coupling and deprotection protocols


Difficulties are mainly related to:

- Intra- and/or intermolecular aggregation
- Secondary structure formation
- Steric hindrance of protecting groups which can generate premature termination of the sequence

β-amyloid (1-42) peptide

DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA

 β -amyloid (1-42) peptide is the major component of the neurological plaques in Alzheimer's patients

Synthesis is difficult due to reported on-resin aggregation and folding due to hydrophobic C-terminus

Biota

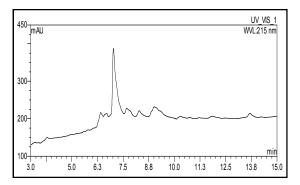
β-amyloid (1-42) peptide reagents

- **Resin**: Fmoc-RAM-TG resin 0.24 mmol/g loading
- Amino Acids: 770- μ L of 0.5M Fmoc-AA in DMF with HOBt
- Coupling: + 880 μL of HBTU/DMF (0.45 M)
 + 380 μL of DIPEA/NMP (2.0 M)
- **De-protect:** 2000 μ L of 40% piperidine in DMF
- Wash: DMF
- Notes: Fmoc-Phe-OH in 0.5M NMP with HOBt (better solubility than in DMF)

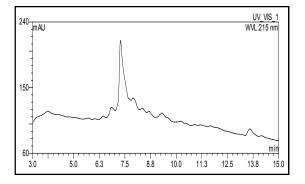
β-amyloid (1-42) peptide method

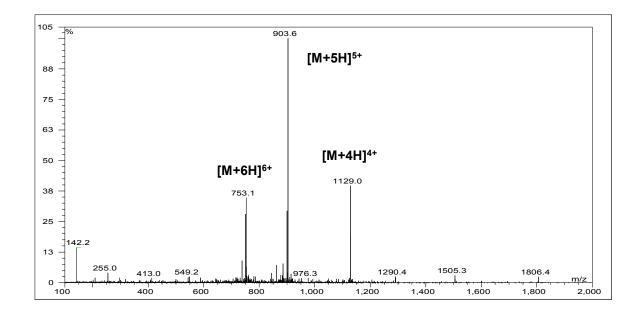
- Synthesis Scale: 100 µmol
- **Deprotection:** 3 min with 40% piperidine in DMF +10 min with 20% piperidine in DMF
- **Wash:** 4 x 30 sec with DMF
- Coupling: 1 x 45 min for RT or 1 x 5 min @ 75 °C (microwave)
- Wash: 3 x 30 sec with DMF

Synthesis of β -amyloid (1-42)


H-DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA-NH₂ (**1**)

Different reaction conditions for the synthesis of 1 using RAM-S-TG resin (0.24 mmol/g):							
Entry	Deprotection*	Coupling ^{**} Temperature	Coupling time	HPLC purity ^{***} (%)	Overall synthesis time		
1	3 + 10 min, RT	RT	1 x 45 min	54	54 h		
2	3 + 10 min, RT	75°C	1 x 5 min	73	26 h		
*Deprotection: 3 min with 40% pip in DMF followed by 10 min with 20% pip in DMF at RT **Couplings reagent HBTU / HOBt ***Cleavage: TFA-TES (97.5:2.5) 1ml for 2h. Then add EDT (16µl) and TMSBr (13µl) for 15 min.							




Synthesis of β -amyloid (1-42)

45 min RT, 54% purity

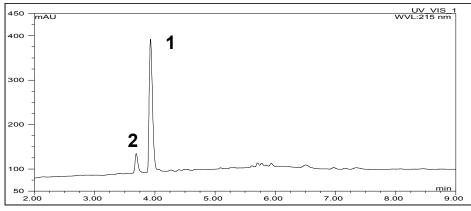
5 min 75 °C, 73% purity

LysM Domain - H-LPERVKVVFPL-NH₂

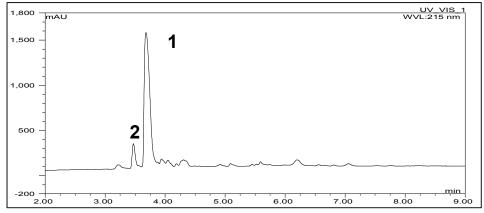
- The LysM (lysine motif) domain is believed to be involved in the regulation of the interaction between plants and rhizobial bacteria to promote plant growth
- The LysM domain is predicted to consists of two a-helices and a two-stranded anti-parallel β -sheet in a β -a-a- β structure
- The peptide H-LPERVKVVFPL-NH₂ is derived from the *C*-terminus of the LysM2 domain and is difficult to synthesize as it contains several β -branched and bulky amino acid residues

LysM Domain - H-LPERVKVVFPL-NH₂

$H-LPERVKVVFPL-NH_2$ (2)


1 3 + 10 min,RT RT 1 x 45 min 52 ~14 h 2 3 + 10 min,RT RT 2 x 45 min 62 ~ 24 h 3 3 + 10 min,RT RT 2 x 120 min 57 ~ 52 h 4 3 + 10 min,RT 75°C 1 x 5 min 70 ~ 6½ h	Entry Deprotection [*] Coupling ^{**} Coupling time HPLC purity ^{***} Overall synt Temperature (%) time					
3 3 + 10 min,RT RT 2 x 120 min 57 ~ 52 h	1	3 + 10 min,RT	RT	1 x 45 min	52	~14 h
	2	3 + 10 min,RT	RT	2 x 45 min	62	~ 24 h
4 3 + 10 min,RT 75°C 1 x 5 min 70 ~ 6½ h	3	3 + 10 min,RT	RT	2 x 120 min	57	~ 52 h
	4	3 + 10 min,RT	75°C	1 x 5 min	70	~ 6½ h
5 3 + 10 min,RT 75°C 2 x 5 min 71 ~ 9½ h	5	3 + 10 min,RT	75°C	2 x 5 min	71	~ 9½ h
6 3 + 10 min,RT 75°C 2 x 10 min 77 ~ 11½ h	6	3 + 10 min,RT	75°C	2 x 10 min	77	~ 11½ h

LysM Domain - H-LPERVKVVFPL-NH₂

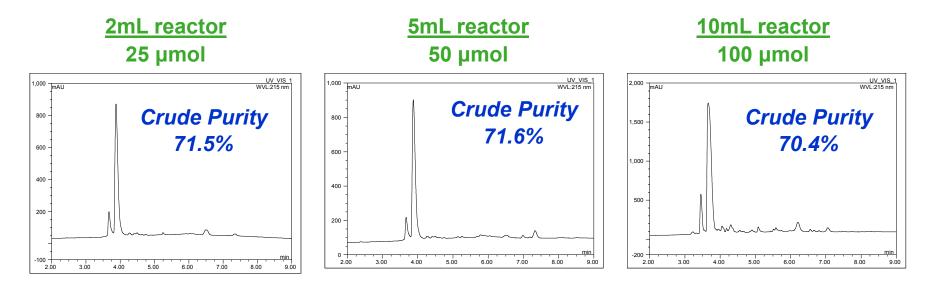

2 x 45 min at RT

Purity: 62%

2 x 10 min at 75 °C

1 = product, 2 = des-Leu(*N*-terminal)

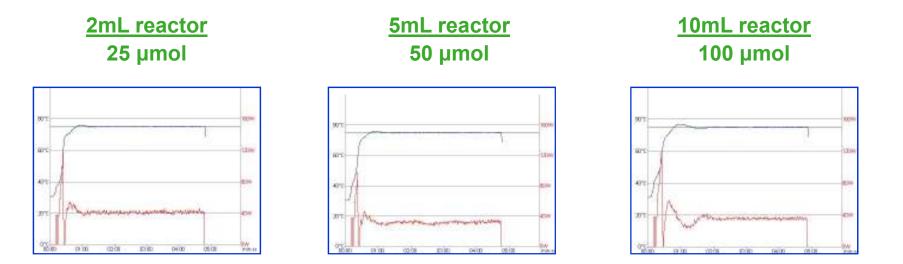
Overall synthesis time: ~24 h


Overall synthesis time: ~11¹/₂ h

Comparison of Different Reactor Vial Sizes

Synthesis of LysM-Domain C-terminal 11mer: - Coupling: 5 min at 75 °C

- Deprotection: 3 + 10 min at RT



Comparison of Different Reactor Vial Sizes

Synthesis of LysM-Domain C-terminal 11mer: - Coupling: 5 min at 75 °C

- Deprotection: 3 + 10 min at RT

<u>Heating profiles:</u> Blue = temperature Red = power

Why are we Interested in *N*-Methylated Amino Acids?

- Exist in many biologically-active natural products
- Help obtain information about backbone conformation
- Offer improved lipophilicity, proteolytic stability and bioavailability
- Potentially useful therapeutics

Highly N-Methylated Trimer Synthesis

H-MeAla-MeIle-MeGly-NH₂(**3**)

Different reaction conditions at RT for the synthesis of 3 using RAM-*S*-TG resin (0.24 mmol/g):

Entry	Coupling Temperature	Coupling time	Coupling reagent*	HPLC purity* (%)	Overall synthesis time
1	RT	20 min	DIC/HOAt	<5	2 h 48 min
2	RT	20 min	HBTU/HOBt	<5	2 h 48 min
3	RT	60 min	DIC/HOAt	<5	4 h 48 min
4	RT	60 min	COMU	<5	4 h 48 min
5	RT	60 min	HATU/HOAt	<5	4 h 48 min
6	RT	2 x 60 min	DIC/HOAt	<5	7 h 51 min
7	RT	24 h	DIC/HOAt	39	~74 h

• Deprotection: 3 min with 40%pip in DMF followed by 10 min with 20%pip in DMF.

* Cleavage: TFA-TES-H₂O (95:2:3) 2h.

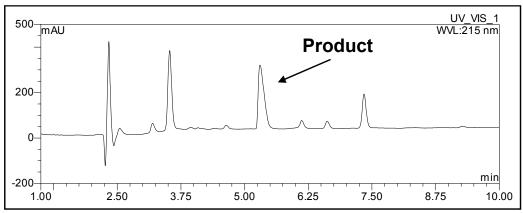
J. Pept Sci 2010, 16, 136-140

Highly N-Methylated Trimer Synthesis

H-MeAla-MeIle-MeGly-NH₂(3)

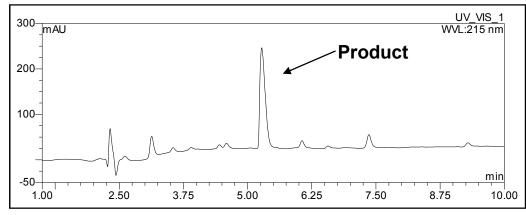
Different reaction conditions with microwave heating for the synthesis of 3:						
Entry	Coupling Temperature	Coupling time	Coupling reagent*	HPLC purity* (%)	Overall synthesis time	
8	75°C	20 min	HBTU/HOBt	8	2 h 48 min	
9	75°C	20 min	COMU	59	2 h 48 min	
10	75°C	20 min	HATU/HOAt	75	2 h 48 min	
11	75°C	20 min	DIC/HOAt	76	2 h 48 min	
12	75°C	2 x 10 min	DIC/HOAt	80	3 h 10 min	

• Deprotection: 3 min with 40%pip in DMF followed by 10 min with 20%pip in DMF.


* Cleavage: TFA-TES- H_2O (95:2:3) 2h.

Highly N-Methylated Trimer Synthesis

H-MeAla-MeIle-MeGly-NH₂($\mathbf{3}$)


24h at RT

Overall synthesis time: ~74 h

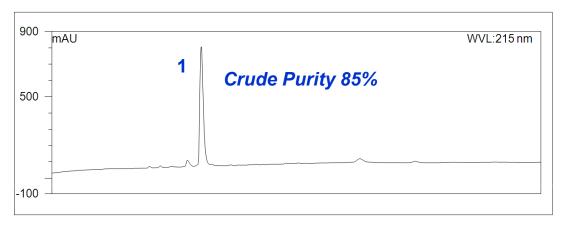
Crude Purity 39%

2 x 10 min at 75°C

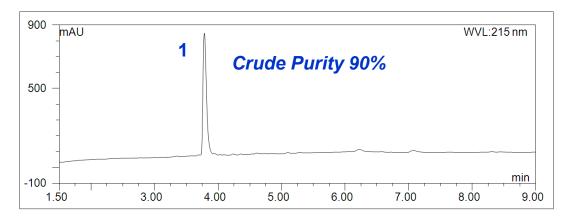
Overall synthesis time: ~3 h

Crude Purity 80%

ACP-(65-74)


 $H^{-65}Val^{-66}Gln^{-67}Ala^{-68}Ala^{-69}Ile^{-70}Asp^{-71}Tyr^{-72}Ile^{-73}Asn^{-74}Gly^{-1}H_{2}(4)$

Different reaction conditions using HBTU/HOBt for the synthesis of 4: Coupling conditions*:							
Entry Residues HPLC purity** Overall synthesi 65-74 (%) time							
1 2 min, RT 85 4 h 53 min							
2 2 min, 75°C 90 4 h 53 min							
 Deprotection: 3 min with 40%pip in DMF followed by 10 min with 20%pip in DMF. * Coupling reagents HBTU/HOBt/DIEA/AA, (5.0:5.2:10:45.2) ** Cleavage: TFA-TES-H₂O (95:2:3) 2h. 							


ACP-(65-74)

2 min RT

Overall synthesis time: ~5 h

2 min 75 °C

Overall synthesis time: ~5 h

[⁶⁷Aib-⁶⁸Aib]-ACP (65-74)

$H^{-65}Val^{-66}Gln^{-67}Aib^{-68}Aib^{-69}Ile^{-70}Asp^{-71}Tyr^{-72}Ile^{-73}Asn^{-74}Gly^{-1}NH_{2}$ (5)

Initial screening of coupling reagents and conditions for the synthesis of 5 using RAM-S-TG resin (0.24 mmol/g):							
	Coupling conditions:						
Entry	Residues 66-68	Residues 65, 69-74	Coupling reagent*	HPLC purity** (%)	Overall synthesis time		
1	5 min 75ºC	2 min 75ºC	HATU	0	5 h 43 min		
2	5 min 75ºC	2 min 75°C	COMU	0	5 h 43 min		
3	5 min 75ºC	2 min 75ºC	DIC	13	5 h 43 min		
4	2 x 5 min 75ºC	2 min 75ºC	DIC	22	5 h 58 min		
5	10 min 75ºC	2 min 75ºC	DIC	20	6 h 19 min		
6	2 x 10 min 75ºC	2 min 75°C	DIC	30	6 h 49 min		

• Deprotection: 3 min with 40%pip in DMF followed by 10 min with 20%pip in DMF.

* HOAt was used as additive (except for COMU) and DIEA as base. 3 equiv amino acids.

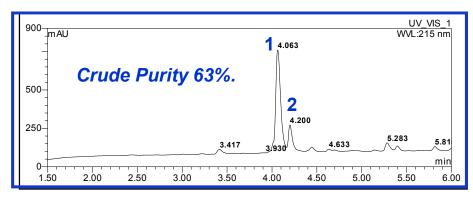
** Cleavage: TFA-TES-H₂O (95:2:3) 2h.

[⁶⁷Aib-⁶⁸Aib]-ACP (65-74)

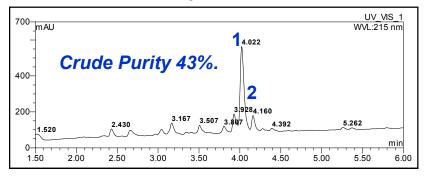
 $H^{-65}Val^{-66}Gln^{-67}Aib^{-68}Aib^{-69}Ile^{-70}Asp^{-71}Tyr^{-72}Ile^{-73}Asn^{-74}Gly^{-1}NH_2$ (5)

Different reaction conditions using DIC/HOAt for the synthesis of 5:						
Coupling conditions*:						
Entry	Residues 66-68	Residue 65, 69-74	HPLC purity ^{**} (%)	Overall synthesis time		
7	2 x10 min, 75ºC	2 min 75ºC	59	6 h 49 min		
8	3 x 10 min, 75°C	2 min 75°C	63	7 h 39 min		
9	3 x 90 min, RT	10 min RT	42	20 h 35 min		
10	3 x 90 min, RT	45 min RT	37	25 h 50 min		
11	3 x 10 min, 75°C	45 min RT	43	13 h 50 min		

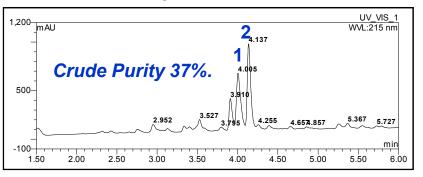
• Deprotection: 3 min with 40%pip in DMF followed by 10 min with 20%pip in DMF.


* DIC/ HOAt / DIEA. 6 equiv amino acids.

** Cleavage: TFA-TES-H₂O (95:2:3) 2h.



[⁶⁷Aib-⁶⁸Aib]-ACP (65-74)


3 x 10min 75 °C/ 2min 75 °C

3 x 10min 75 °C/ 45 min RT

3 x 90 min RT/ 45 min RT

1 = Product, 2 = des-Aib

Conclusion: Benefits of Microwave Irradiation in SPPS

- Powerful technique for accelerating the synthesis of peptides and peptidomimetics
- Allows access to the synthesis of difficult peptide sequences
- Improve coupling rates and prevent side reactions
- Use of standard coupling reagents
- Reduction in cost of synthesis
- "Green Chemistry" potential, less harmful solvents

Thank you!

We look forward to meeting you on our Stand

